EE 330

Homework 6
Spring 2024 (This assignment is due Friday February 23 at noon)
Assume a CMOS process is characterized by model parameters extracted from a $0.18 \mu \mathrm{~m}$ process described in the table appended below.

Problem 1 Assume a resistor has a resistance of $1 \mathrm{~K} \Omega$ at $\mathrm{T}=300^{\circ} \mathrm{K}$. If the TCR of this resistor is constant of value $2000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, what will be the resistance at $\mathrm{T}=350^{\circ} \mathrm{K}$?

Problem 2 Consider an $n+$ diffused resistor that is $200 u$ long, $1.5 u$ wide, and $2 u$ thick. What is the nominal value of the resistance if it is doped with Phosphorus and the doping density is uniform $5 \mathrm{E} 14 / \mathrm{cm}^{3}$.

Problem 3 Consider the two circuits shown below. Assume $\mathrm{R}=1 \mathrm{~K} \Omega$ and that the op amp is ideal. Assume the diode can be modeled by a piecewise linear model with a cut-in voltage of 0.6 V .
a) Derive an expression for and plot the transfer characteristics ($\mathrm{V}_{\text {out }}$ vs V_{IN}) for both circuits and comment on the relative performance of the two circuits
b) From the results obtained in Part a), plot the output of both circuits if $\mathrm{V}_{\mathrm{IN}}=10 \sin (1000 \mathrm{t})$
c) Repeat part b) if $V_{\text {IN }}=\sin (1000 t)$
d) Repeat part b) if $\mathrm{V}_{\mathrm{IN}}=0.25 \sin (1000 \mathrm{t})$

Problem 4 Consider the first-order lowpass filter (LPF) shown below that has a 3 dB frequency of 10 MHz when operating at $\mathrm{T}=273^{\circ} \mathrm{K}$. Assume the resistor has a value of $10 \mathrm{~K} \Omega$ at this operating temperature.
a) If the TCR of this resistor is constant of value $2300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and the capacitor has a constant TCC of $1000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, plot the frequency response for the LPF at T=273 ${ }^{\circ} \mathrm{K}$ and $\mathrm{T}=350^{\circ} \mathrm{K}$.
b) What percent change occurs in the 3 dB frequency when the temperature is increased from $\mathrm{T}=273^{\circ} \mathrm{K}$ to $\mathrm{T}=350^{\circ} \mathrm{K}$. Assume the temperature coefficients used in part a)

Problem 5 If the voltage of a forward-biased pn junction is varied between 0.5 V and 0.6 V , what is the range in the diode current. Assume the junction area of the diode is $50 \mu^{2}$ and $\mathrm{J}_{\mathrm{S}}=10^{-15} \mathrm{~A} / \mu^{2}$.

Problem 6 Determine the current I_{D} (within $\pm 5 \%$) if $V_{X}=10 \mathrm{~V}$ for the following circuit. Assume the area of the diode is $200 \mu^{2}$ and $J_{S}=10^{-15} \mathrm{~A} / \mathrm{u}^{2}$.

Problem 7 Repeat Problem 6 if $\mathrm{V}_{\mathrm{X}}=520 \mathrm{mV}$.

Problem 8 Determine the quantities indicated with a? in the following circuits. Assume the diodes are ideal.

Problem 9 Assume the op amps and the diodes are ideal in the following circuit.
a) Obtain an expression for and plot Vout vs $\mathrm{V}_{\text {IN }}$ for this circuit
b) Comment on what useful function this circuit performs

Problem 10 Implement a 4 to 1 multiplexer and a 1 to 4 demultiplexer, both with an active low enable pin, using Verilog. When the multiplexer/demultiplexer is disabled, its output should be low. Design a testbench proving function using Verilog. Submit module code, testbench code, and Modelsim waveforms.

Passive Process Parameters for $0.18 \mu \mathrm{~m}$ CMOS Process								
	N+	P+	POLY	M1	M2	M3	N_W	UNITS
RESISTANCES								
Sheet Resistance	6.6	7.5	7.7	0.08	0.08	0.08	941	Ohms/sq
Contact Resistance	10.1	10.6	9.3		4.18	8.97		Ohms
CAPACITANCES								
Area (substrate)	998	1132	103	39	19	13	127	af/ $/ \mathrm{m}^{2}$
Area ($\mathrm{N}+$ active)			8566	54	21	14		af/ $/ \mathrm{mm}^{2}$
Area (P+active)			8324					af/ $/ \mathrm{mm}^{2}$
Area (POLY)				64	18	10		af/ $/ \mathrm{m}^{2}$
Area (metal 1)					44	16		af $/ \mathrm{um}^{2}$
Area (metal 2)						38		af/ $/ \mathrm{m}^{2}$
Fringe (substrate)	244	201		18	61	55		af/ $\mu \mathrm{m}$
Fringe (poly)				69	39	29		af/ $/$ m
Fringe (metal 1)					64	35		af/ $/$ m
Fringe (metal 2)						54		af/ $/ \mathrm{m}$
Overlap (P+active)			652					af/ $/ \mu \mathrm{m}$

Passive Process Parameters for ON $0.5 \mu \mathrm{~m}$ CMOS Process											
	$\mathrm{N}+$	P+	Poly	POLY2	HR_P2	M1	M2	M3	N/PLY	N_W	UNITS
RESISTANCES											
Sheet Resistance	84	105	23.5	999	44	0.09	0.10	0.05	825	815	Ohms/sq
Contact Resistance	65	150	17		29		0.97	0.79			Ohms
CAPACITANCES											
Area (substrate)	425	731	84			27	12	7		37	af/ $/ \mathrm{mm}^{2}$
Area ($\mathrm{N}+$ active)			2434			35	16	11			$\mathrm{af} / \mathrm{mm}^{2}$
Area (P+active)			2335								af $/ \mathrm{um}^{2}$
Area (POLY)				938		56	15	9			af/ $/ \mathrm{mm}^{2}$
Area (POLY2)						49					af $/$ /m ${ }^{2}$
Area (metal 1)							31	13			af/ $/ \mathrm{mm}^{2}$
Area (metal 2)								35			af/ $/ \mathrm{um}^{2}$
Fringe (substrate)	344	238				49	33	23			af/um
Fringe (poly)						59	38	28			af/um
Fringe (metal 1)							51	34			af/um
Fringe (metal 2)								52			af/um
Overlap (N active)			232								af/um
Overlap (P+active)			312								af/ $/ \mathrm{m}$

